

Module 1: Foundations of biodiversity and taxonomy

This module introduces the fundamental concepts required to understand biological diversity and the systems used to identify, name, and classify living organisms. Learners will explore what biodiversity is, how it is structured, how organisms are classified, and why accurate identification is essential for science, conservation, and society.

1.1 What is biodiversity?

Biodiversity refers to the variety of life on Earth, encompassing all living organisms, their genetic differences, and the ecosystems they form.

The Three Levels of Biodiversity

- **Genetic diversity**
Variation within a species (e.g., crop varieties, population-level adaptations)
- **Species diversity**
The number and variety of species in a region or globally
- **Ecosystem diversity**
The range of habitats, ecological communities, and biological processes

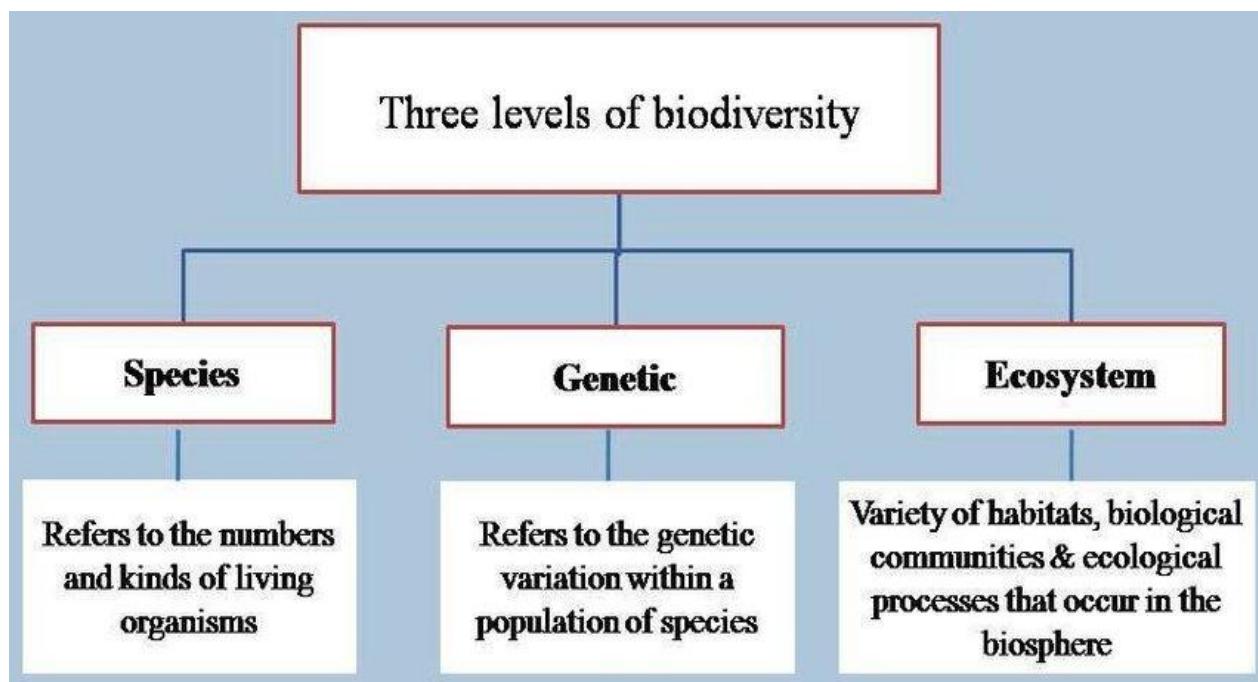


Figure 1. The three levels of biodiversity (https://www.researchgate.net/figure/The-three-levels-of-the-biodiversity_fig1_371127161)

Why Biodiversity Matters

Biodiversity is crucial for ecosystem stability and resilience, buffering against disturbances through functional redundancy among species. It underpins food security via pollinators and wild crop relatives, while supplying over 70% of modern medicines from natural compounds. Diverse systems regulate climate through enhanced carbon sequestration and nutrient cycling, delivering immense cultural, economic (\$125 trillion annually), and scientific value. (<https://www.who.int/news-room/fact-sheets/detail/biodiversity>)

1.2 Global biodiversity

Global biodiversity encompasses an estimated 8.7 million eukaryotic species, with 86–91% still undescribed, primarily insects, fungi, and microorganisms that dominate unseen diversity. Recent discovery rates average ~16,000 new species annually (2015–2025), skewed toward charismatic vertebrates and accessible temperate regions rather than tropics or deep-sea/soil habitats. These biases leave microbial and cryptic taxa vastly underestimated, hindering conservation amid accelerating extinction pressures. (<https://www.nature.com/scitable/knowledge/library/biodiversity-and-ecosystem-stability-17059965/>)

1.3 Why accurate identification is fundamental

Accurate species identification is fundamental to both scientific and applied biology, ensuring reproducibility in research through standardized nomenclature that supports reliable ecological and evolutionary studies while enabling correct interpretation of biological data. In practice, it drives conservation efforts for endangered species, bolsters agriculture and biosecurity against invasives, and informs medicine, microbiology, and environmental monitoring. Misidentification risks incorrect conservation priorities, flawed ecological models, and costly economic or regulatory errors. (<https://pmc.ncbi.nlm.nih.gov/articles/PMC4312931/>)

1.4 Taxonomy

Taxonomy is the science of identifying, naming, and classifying organisms based on shared characteristics and evolutionary relationships.

The taxonomic hierarchy

The taxonomic hierarchy organizes life from broad **Domain** and **Kingdom** through **Phylum, Class, Order, Family, Genus**, to specific **Species**, providing a nested classification framework essential for identification. Species represent the basic biological unit under the biological species concept (interbreeding populations), complemented by morphological (shared traits) and molecular (genetic divergence) concepts, though asexual organisms and microbes challenge these due to absent reproduction or cryptic diversity. (<https://pmc.ncbi.nlm.nih.gov/articles/PMC11765323/>)

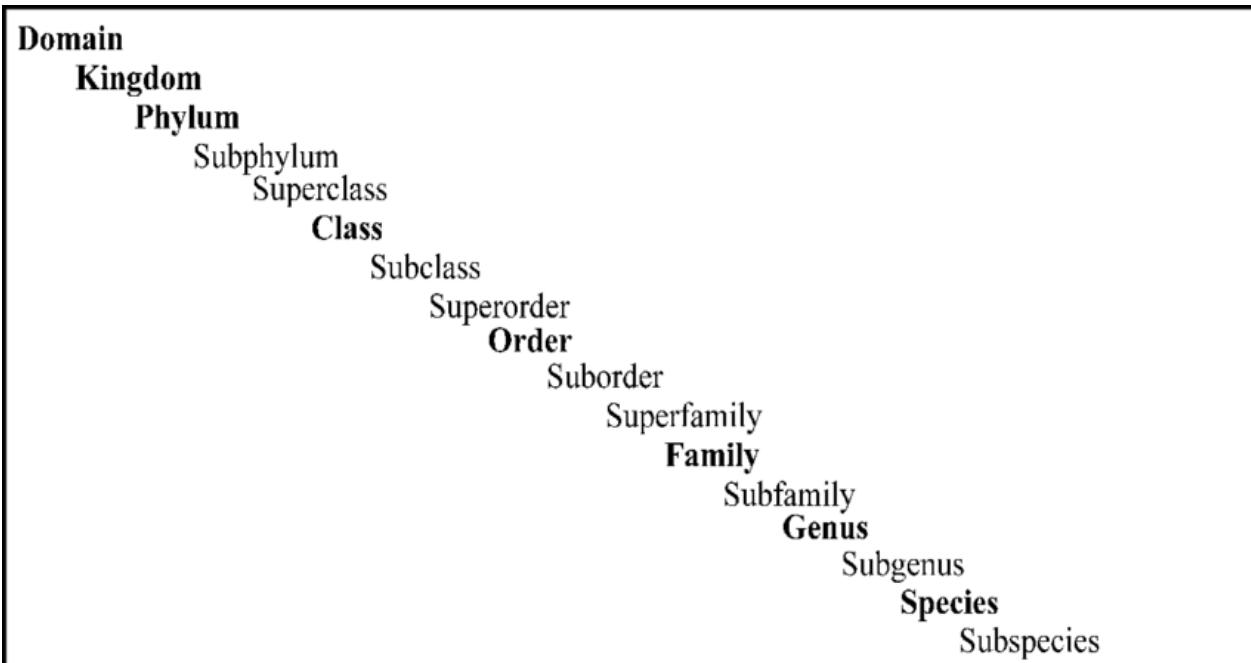


Figure 2. The taxonomic hierarchy (https://www.researchgate.net/figure/Taxonomic-Hierarchy-often-referred-to-as-the-Tree-of-Life-Bold-text-indicates-a-level_fig1_42853127)

1.5 Binomial Nomenclature

Introduced by Carl Linnaeus in *Systema Naturae* (1758–1759), binomial nomenclature assigns every species a unique two-part scientific name: Genus (capitalized) followed by species (lowercase), italicized (e.g., *Homo sapiens*). This universal system eliminates confusion from vernacular common names, linking organisms to vast global literature, databases like GBIF, and taxonomic revisions. Names follow strict Latinized formats governed by codes—ICZN (zoology), ICN (botany), ICNP (prokaryotes)—ensuring stability and precision in biodiversity science. (https://norazlicucst.weebly.com/uploads/7/6/3/2/7632139/binomial_nomenclature.pdf)

BINOMIAL NOMENCLATURE

The two-part scientific name of a species

- Genus (capital letter)
- Species (small letter)

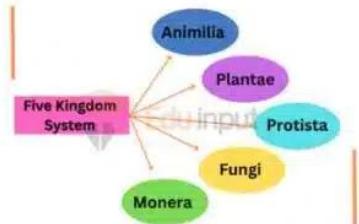
The diagram shows the scientific name *Homo sapiens* in a large, bold, italicized font. A horizontal line is drawn underneath the word *Homo*. Two arrows point downwards from this line to the words *Genus* and *Species*. The arrow for *Genus* is on the left, pointing to the word *Homo*. The arrow for *Species* is on the right, pointing to the word *sapiens*.

Figure 3. Binomial Nomenclature (<https://vocal.media/education/nctb-science-class-8-ch-01-guide-notes-te3n00tcc>)

1.6 Phylogeny vs. Taxonomy

Phylogeny reconstructs evolutionary relationships based on shared ancestry, visualized as branching phylogenetic trees that depict divergence from common ancestors.

Taxonomy assigns formal names and hierarchical ranks (Domain to species), increasingly informed by phylogenetic evidence to reflect true evolutionary history.


Modern classification integrates both: phylogeny ensures evolutionary accuracy, while taxonomy translates these relationships into practical, standardized systems for identification and communication. (https://bio.libretexts.org/Courses/Sacramento_City_College/Biology_342_-The_New_Plagues/02:_Classifying_Pathogens_and_Hosts/2.01:_Taxonomy_and_Phylogeny)

Taxonomy

vs

Phylogeny

Taxonomy is the science of naming, describing and classifying organisms and includes all plants, animals and microorganisms of the world.

Phylogeny is the representation of the evolutionary history and relationships between groups of organisms.

Phylogenetic tree

Figure 4. The main difference between taxonomy and phylogeny (https://eduinput.com/differences-between-taxonomy-and-phylogeny/#google_vignette)

1.7 Introduction to Integrative Taxonomy

Integrative taxonomy is necessary because morphology alone often misleads, failing to distinguish cryptic species with identical appearances or varying traits across life stages. It combines multiple data sources: morphological traits for visible diagnostics, DNA sequences for genetic divergence, ecological/geographic data for niche separation, and chemical/physiological markers for biochemical uniqueness yielding robust species delimitation superior to single method approaches.